

Constructing a modeling tool for wolf status review in WA

December 2020 Update

•••

Lisanne Petracca,^{1,2} Ben Maletzke,³ Beth Gardner,¹ Sarah J Converse^{4,2,1}

¹University of Washington

²Washington Cooperative Fish and Wildlife Research Unit

³Washington Department of Fish and Wildlife

⁴United States Geological Survey

Our goal is to use rigorous quantitative science to assess progress towards wolf recovery goals in Washington

A reminder of who we are...

- Lisanne Petracca
 - Postdoctoral Scientist
- Ben Maletzke
 - WDFW Wolf Specialist
- Sarah Converse
 - Unit Leader, USGS Washington Cooperative
 Fish and Wildlife Research Unit
 - Associate Professor, UW
- Beth Gardner
 - Associate Professor, UW

What do we hope to achieve?

- Estimate demographic rates for wolves in Washington
 - Survival, recruitment, dispersal
- Connect these demographic rates to a spatial, pack-level colonization process
- Develop simulation scenarios to account for wolf management strategies
- Use current conditions and simulated scenarios to assess progress toward recovery goals

Sarah Bassing

A reminder of recovery goals from 2011 plan

Delisting: at least 4 breeding pairs in each Recovery Region + 3
 additional breeding pairs anywhere in state for 3 consecutive years

• Alternatively, at least 4 breeding pairs in each Recovery Region + 6 additional breeding pairs anywhere in state *for a single year*

- Less rigorous criteria for downlisting to state threatened or state sensitive
 - Threatened: 2 BP per region for 3 consecutive years
 - Sensitive: 4 BP per region for 3 consecutive years

What is our project timeline?

- June to September 2020
 - Project scoping and data compilation
- September 2020 January 2021
 - Model development
- February to March 2021
 - Scenario dev't and implementation
- April to July 2021
 - Draft report complete, revision w/ WDFW
- August 2021
 - Submission of final report and model code

What is our project timeline?

- June to September 2020
 - Project scoping and data compilation
- September 2020 January 2021
 - Model development
- February to March 2021
 - Scenario dev't and implementation
- April to July 2021
 - Draft report complete, revision w/ WDFW
- August 2021
 - Submission of final report and model code

A reminder of our statistical approach

- Use of an integrated population model
 - Allows the use of multiple datasets in a single model framework
 - Increases precision & is a more efficient use of data than analyzing datasets independently
- By giving this model a spatial component, we can integrate dispersal behaviors and colonization of new areas
- Use of Bayesian framework allows for correct propagation of uncertainty in model parameters

What are the demographic model components?

Let's start with the survival component

For the survival part of our model, we used GPS collar data from 76 wolves

Now let's move into the birth process

There are two data sources we are interested in: pup counts (up to 2014) and 200,000 images and videos from WDFW camera traps

How will all those images and videos be processed?

 We are currently hiring an undergraduate student to process these data using a program called Timelapse

Spokane Tribal Wildlife Program (Savanah Walker)

Now let's move onto abundance

For abundance, we will be using data from winter aerial surveys by WDFW (2008-2020)

Benjamin Drummond and Sara Joy Steele, "How to Count A Wolf"

Bringing it all together spatially...

Our current strategy is to create hypothetical pack territories across WA, and have them "colonized" based on habitat suitability and individual-based movements

What data will determine territory size? The GPS collar data

And what data will determine habitat suitability? Possibly systematically-placed camera traps across WA

Predicted wolf occupancy in NE Washington 0.00 0.25 0.50 0.75

But what about movement? The dispersal process represents our biggest current challenge

What do we still need to figure out?

- (1) The recruitment side of the demographics model (can the 200K images/videos help us?)
- (2) The spatial side of the model, particularly incorporating movement (our momentum is currently here)
- (3) Future scenarios (e.g., management of livestock depredation)

Example of management scenarios and predictions of quasi-extinction probability of a target species (Saunders et al. 2018)

What will modeling results include?

- A model that captures the present population dynamics and space use of WA wolves while considering uncertainty
- For future time points:
 - Probability of meeting downlisting and delisting criteria
 - Predicted abundance and distribution
 - Probability of extinction
- Expected time to meet downlisting and delisting criteria
- Measures of uncertainty around each of these quantities

Example of estimated population size from an IPM, in this case for the Great Lakes piping plover (Saunders et al. 2018)

Management judgment will be needed

- Are the criteria still appropriate given predicted probability of extinction and expected future abundance?
- Are modeled management scenarios realistic?
- Are assumptions made in the modeling exercise supported?

Thank you. We welcome your questions.

