Fish Committee Fish & Wildlife Commission Meeting Willapa Bay Salmon Management Policy Update December 12, 2024 Cle Elum, WA

> Marlene Wagner, Toby Harbison, Jan Ohlberger, & Ken Warheit

Presentation Overview

Willapa Bay Salmon Management Policy Review

- Revised policy direction
- Review of 2024 season

Management Strategy Evaluation (MSE) Process & Update

- IPM and MSE models (tool development)
- Performance metrics
- Public input survey and meeting approach

Hatchery Management Plan (HMP) Development Update

• Technical Procedures Document (TPD)

Willapa Bay Salmon Management Policy Review

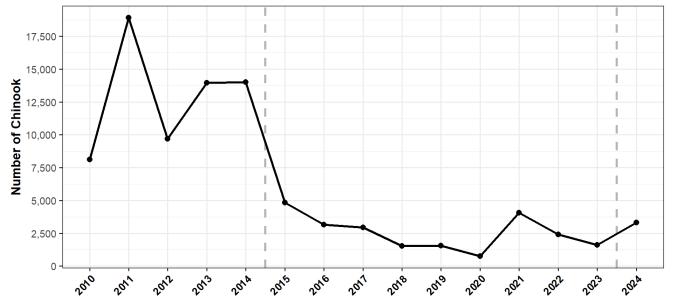
Willapa Bay Salmon Management Policy

Revised policy implemented in September 2023

• Replaced initial policy adopted in 2014

Major revisions

- Modified time and area restrictions for commercial fisheries
- Develop new harvest control rules using Management Strategy Evaluations (MSEs) for all species of salmon in the bay
- Hatchery production levels removed, and Hatchery Management Plan (HMPs) developed for each program under Commissioner Policy C-3624



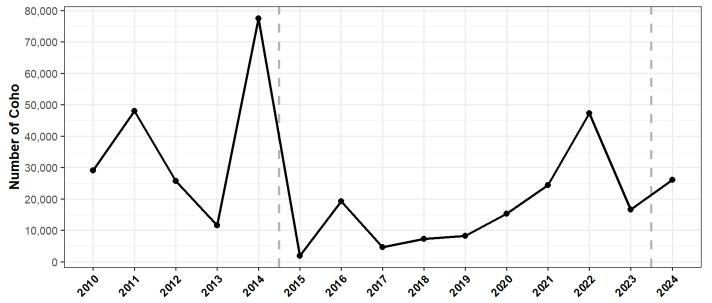
2024 Willapa Bay Commercial Fisheries

Chinook Policy Objectives:

- Natural-origin escapement goal: 4,353
- Mark-selective fishery
- General priority for recreational fisheries but provide meaningful fishing opportunity for both recreational and commercial fisheries
- Natural-origin impact rate not to exceed 20% in Willapa and Naselle Rivers
 - Preseason modeled impact rates:
 - Willapa River (13.7%)
 - Naselle River (18.0%)

Commercial Chinook Catch

Preseason expected commercial catch: 4,201 Final commercial catch: 3,321 (79% of preseason expectations)



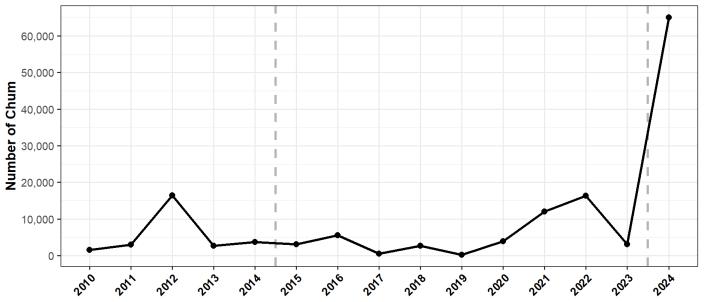
2024 Willapa Bay Commercial Fisheries

Coho Policy Objectives:

- Manage to an aggregate natural-origin escapement goal of 13,600
- General priority for commercial fisheries but provide meaningful fishing opportunity for both recreational and commercial fisheries
- Impact rate not to exceed 10% of natural-origin fish if forecast is less than the escapement goal or escapement goal has not been met in 3 of the last 5 years

Commercial Coho Catch

Preseason expected commercial catch: 31,128 Final commercial catch: 26,242 (84% of preseason expectations)

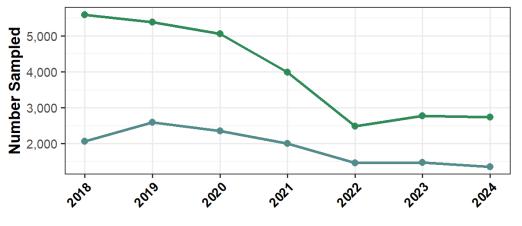


2024 Willapa Bay Commercial Fisheries

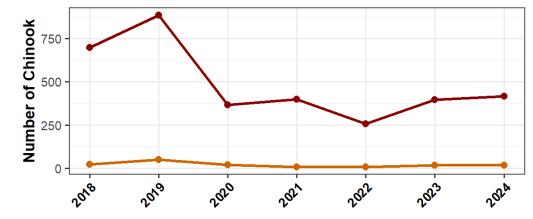
Chum Policy Objectives:

- Manage to aggregate escapement goal of 35,400
- General priority for commercial fisheries but provide meaningful fishing opportunity for both recreational and commercial fisheries
- Total impact rate not to exceed 10% of fish if forecast is less than the escapement goal or escapement goal has not met in 3 of the last 5 years

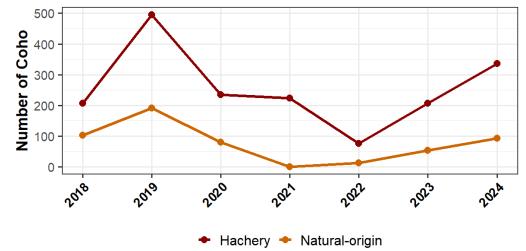
Commercial Chum Catch


Preseason expected commercial catch: 31,933 Final commercial catch: 65,057 (204% of preseason expectations)

2024 Willapa Bay Marine Recreational Fisheries


- Policy guidance to provide first opportunity in the northern portion of WB to mixed-stock recreational fishery
- Creel protocol: Sampled 4 days a week in 2 strata

Marine Recreational Creel Effort



Anglers + Boats

Marine Recreational Chinook Catch

Marine Recreational Coho Catch

Hatchery Broodstock Goals

Chinook	Facility	Program Release	Total Eggs Needed	Eggs on Hand		
	Naselle	5,000,000	5,500,000	5,574,000		
	Nemah	3,300,000	3,630,000	3,699,000		
	Forks Creek	400,000	440,000	714,000		
Coho	Facility	Program Release	Total Eggs Needed	Eggs on Hand		
	Naselle	1,400,000	1,540,000	1,731,400		
	Nemah	No Coho program				
	Forks Creek	600,000	660,000	503,800		
Chum	Facility	Program Release	Total Eggs Needed	Eggs on Hand		
	Naselle	500,000	550,000	562,500		
	Nemah	1,500,000	1,650,000	2,127,500		
	Forks Creek	500,000	550,000	550,000		

2024 Willapa Bay Preliminary Escapement Estimates

Species	Preseason Expected Natural-origin Escapement	Total In-season Estimated Escapement (to-date)	Natural-origin Escapement Goal
Chinook	2,972	TBD	4,353
Coho	16,470	~25,000	13,600
Chum	48,350	~55,000	35,400

Annual Willapa Bay Salmon Fisheries Timeline

- **Commercial Fishery:** August 2024 to November 2025
- Recreational Marine Fishery: August 2024 to January 2025
- Freshwater Fishery: August 2024 to January 2025 (varies depending on system)
- Spawning ground surveys:
 - Chinook: August to October 2024
 - Coho: Late December 2024 to February 2025
 - Chum: October to November 2024
- Coded-wire tags (stock composition) and scale data (age composition): January 2025
- **Genetics:** February 2025
- Run Reconstruction: Early February 2025
- Catch Record Card data: August 2025

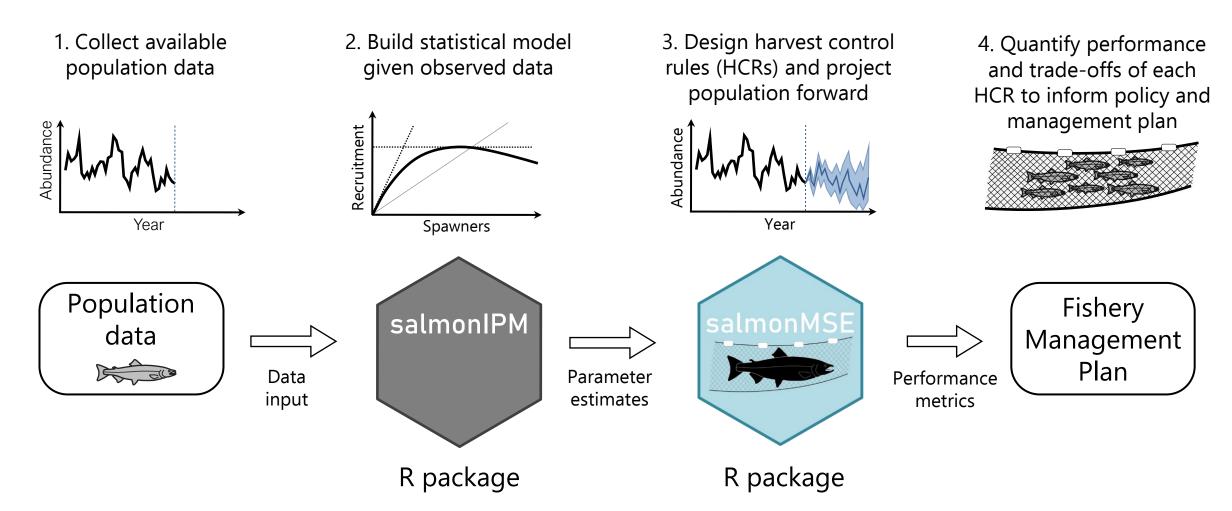
Management Strategy Evaluation Process and Update

What is an MSE?

- Evaluates the relative performance of alternative harvest control rules (HCRs)
- Simulates long-term effects of HCRs (that determine total allowable fishing mortality)
- Quantifies performance of HCRs considering biological and socio-economic objectives

Given what we know about a population from our past observations

How might the future look like if we manage using a specific HCR



What does that mean for risks to populations and fishing opportunities?

Compares alternative management strategies to evaluate their relative risks and fishing opportunities

MSE Process

> Generic process applicable to all populations and tools to be published soon

Department of Fish and Wildlife

Data Summarization

- Spawner abundance in each year
- pHOS (percent hatchery-origin spawners)
- Age structure information from scales
- Harvest/exploitation rates
- Hatchery production/removals

Integrated Population Model

Why it is 'state-of-the-art'

- Combines run-reconstruction with stock-recruit model
- Integrates information on abundances and demography (age structure)
- Can incorporate independent prior information (Bayesian approach)
- Allows for sharing of information across populations (hierarchical model)
- Estimated parameters capture full uncertainty in the data

MSE Harvest Control Rules

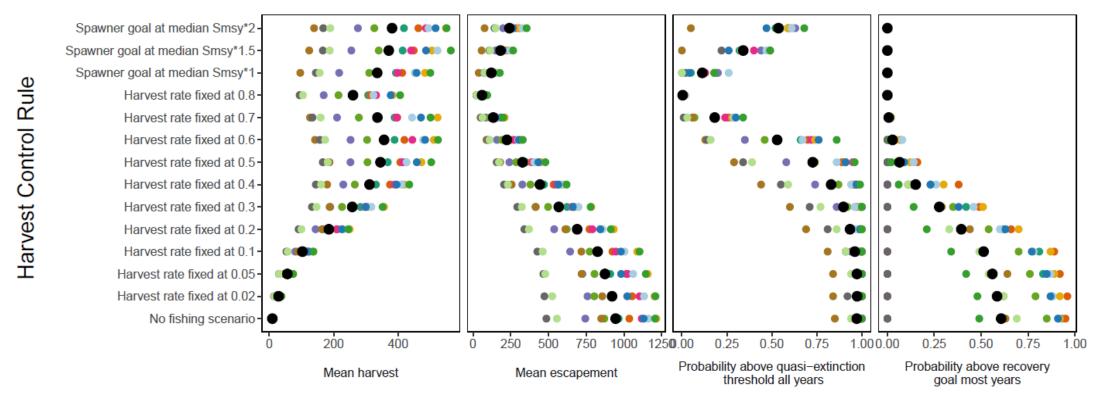
Types of harvest control rules (HCRs)

- Escapement goal (current goal, escapement at MSY, alternative)
- Fixed harvest rate
- Escapement goal with harvest rate below or above goal
- Abundance-based harvest rate tiers (e.g., tied to biological reference points)

MSE Performance Metrics

Conservation/risk metrics

- Mean escapement
- Proportion of years with spawner abundance above conservation goals or risk thresholds (e.g., recovery goal or quasi-extinction risk)
- Proportion of years with spawner abundance above thresholds linked to reference points (e.g., spawners at MSY or at equilibrium)


Fishing opportunity metrics

- Mean harvest or catch-and-release encounters
- Stability in harvest or catch-and-release encounters
- Proportion of years with open fisheries
- Relative availability of time on the water

MSE Example

Project populations forward based on IPM-estimated parameters
 Apply alternative HCRs (e.g., escapement goals and harvest rates)
 Calculate opportunity and conservation/risk metrics for each HCR

> Quantify trade-offs and select HCR that best balances opportunities and risks

Department of Fish and Wildlife

Information subject to changes and amendments over time

Communications & Public Input Process

- The MSE process does not select which HCR option to implement -- that decision lies with fisheries managers, within legal bounds, informed by public input
- MSE results will be communicated to the public to facilitate public input in a 3step process
 - 1. Blog posts describing the MSE process and its policy application in understandable terms
 - Public meeting(s) to present the MSE process and results and answer questions, which will be recorded and available online with the public input survey thereafter
 - 3. An online public input survey

Public Input Survey

- Public input survey creates a statistically robust, transparent, and repeatable pathway to incorporate public preference into the HCR selection process
- The survey will answer the following questions
 - 1. How does the public value measures of fishery management performance, both in terms of conservation and opportunity?
 - Measures include factors like extinction risk and availability of time on the water, etc.
 - 2. Related to those values, which harvest control rules do the public prefer?
 - 3. Do those values and preferences differ across fishery (e.g., wild steelhead anglers vs. hatchery coho anglers) and demographic groups?
- HCRs will be presented as options associated with tradeoffs rather than naming the individual HCRs to avoid familiarity bias
- Survey results will be statistically evaluated to generate robust information

Example Survey Question

Question: Rank the follow HCR options from first choice to last choice:

Population Metrics

Fishing Opportunity Metrics

(Scale of 1 to 10: 1=lowest performance, 10=highest performance)

HCRs	Probability of reaching ESA delisting goal	-	Probability of remaining above extinction threshold	Availability o time on the water	Proportion of fyears the fishery is open	Mean harvest and/or catch and release encounters
Option A	4	2	9	4	8	4
Option B	5	7	6	6	9	3
Option C	10	8	10	3	3	2
Option D	3	2	5	10	7	9
Option E	7	4	8	2	4	6

*These are simulated results generated as an example but are not actual output.

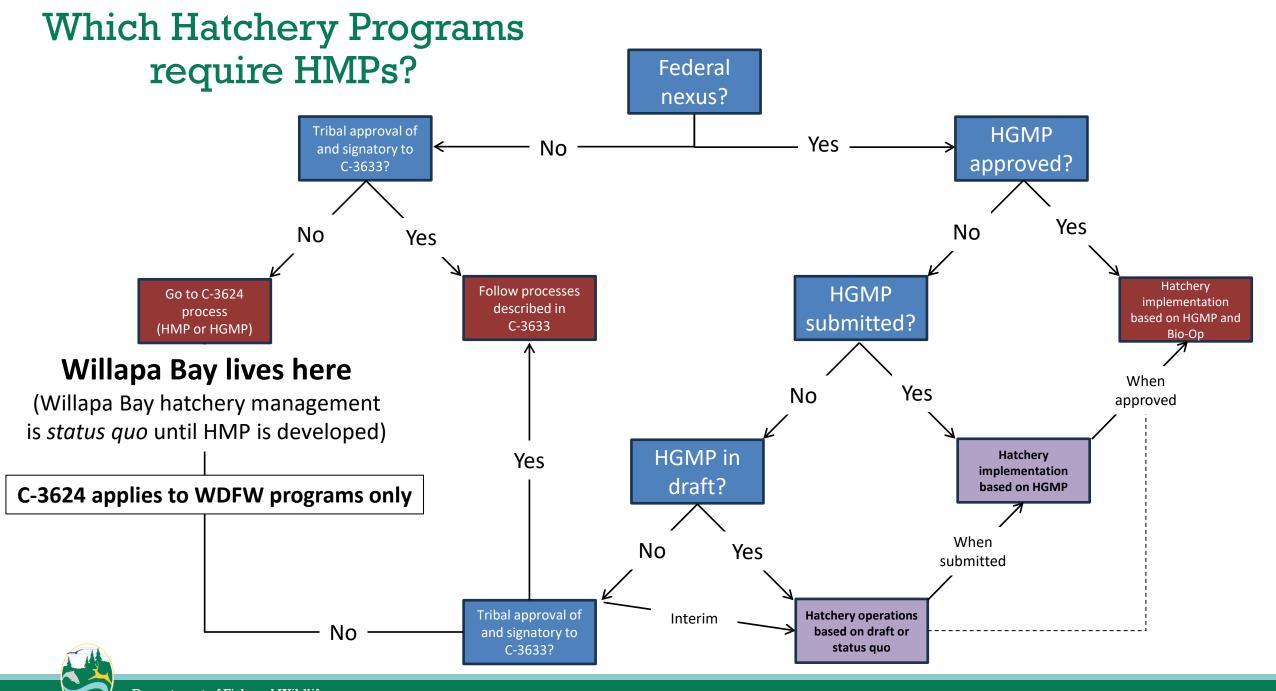
MSE Tool Development Schedule

Models are generally developed in a beta version

- IPM now includes steelhead model and model for wild vs. hatchery fish
- MSE suite of HCRs and performance metrics implemented
 - Currently applying IPM/MSE approach to Lower Columbia River as part of quantitative analyses to inform new FMEPs for all salmon and steelhead
 - Tools developed in Lower Columbia River will be used as we move to Willapa Bay

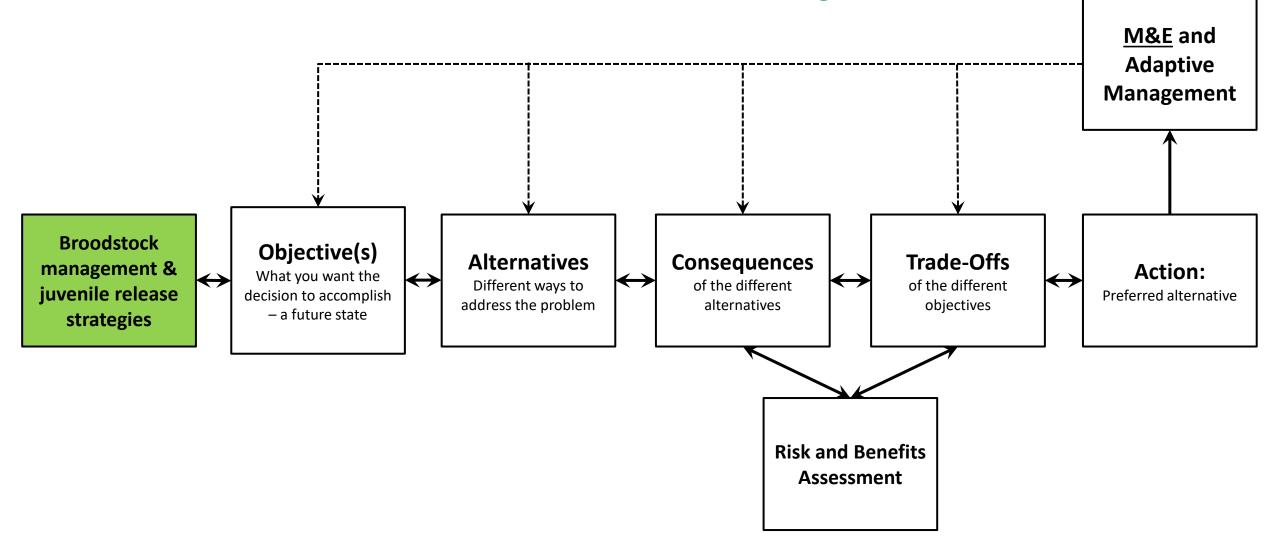
Willapa Bay MSE progress

- Currently gathering and formatting necessary data to run IPM and MSE models
- Public input process is developed and will be adapted for Willapa Bay
- Harvest Control Rules considered will be specific to Willapa Bay, depending on unique population and harvest dynamics


Hatchery Management Plan Update

C-3624: Anadromous Salmon and Steelhead Hatchery Policy – FWC Policy

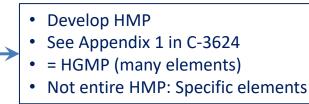
Hatchery Management Plans (HMPs)


- HMPs developed for all anadromous salmon and steelhead hatchery programs <u>under the authority of C-3624</u>
- Reflect balance between minimizing genetic and ecological risks and providing for the ecological and societal (and cultural) benefits
- Balance will be achieved through a structured decision-making process.
 - Science-based risk management framework
 - Include uncertainties
 - Adaptive management through a monitoring and evaluation program
- Appendix 1 of C-3624 provides a "prototype" of the TOC for the HMPs
 - Roughly equivalent to the TOC of HGMPs
- Technical Procedures Document (TPD)

Department of Fish and Wildlife Information subject to changes and amendments over time

C-3624 Technical Procedures Process Structure Decision Making

TPD Details

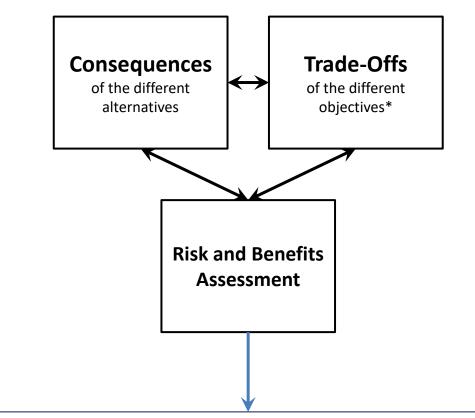

Broodstock
management &
juvenile release
strategies

Objective(s)

What you want the

decision to accomplish

– a future state



- Reflection of values (of the public and tribal)
 and legal requirements
 Titul Toroto Biolete
 - Tribal Treaty Rights
 - Program / Basin specific
 - Recovery and harvest need to be considered
 - Need to be paired with performance measures

Different ways to address the problem

- Alternatives are value/objectives-focused
- Example: complete HMP
 - HMP v1: Production = x
 - HMP v2: Production = y < x
- Range of alternatives should be exhaustive
- More than one alternative is needed

- Comparison of alternatives
- Make use of performance measures
- Modelling can be useful
- Refer to objectives
- Tradeoffs: Alternatives do not address all objectives equally
- Example:
 - HMP v1: Ocean harvest = a, Terminal harvest = b; pHOS = c
 - HMP v2: Ocean harvest = a, Terminal harvest = <b; pHOS = <c

TPD and HMP development schedule

Reminder: Development of HMPs occurs after the TPD is finalized

- Tribal consultation on the development of the TPD is required by C-3624
 - Initial consultation with Tribes: April 17, 2024
 - January 2025: next consultation needs to be scheduled
- Mid Summer 2025: Final draft of TPD
- Monitoring and Evaluation Program
 - Began in 2023
 - Phase 1 data collection: in-hatchery survival from broodstock to juvenile release
- SEPA review is required (SEPA on C-3624 was phased)
 - TPD document or individual/bundled HMPs

Questions?

